(線上版)電子齒輪比 計算工具 – 皮帶(滾輪)

皮帶機構 電子齒輪比 計算說明圖

本文針對 皮帶 或 滾輪機構不包含 分度盤/刀塔[註 1],只要輸入 機械參數與使用者指定的脈波單位(PUU),就能算出對應的齒輪比.同樣也提供模擬資訊,根據輸入的工作速度(V),算出 馬達轉速 與 上位機脈波頻率,是用來驗證 系統需求 是否滿足的好幫手!使用步驟如下:

  1. 輸入 使用者單位(PUU)與 機械單位(mm)的關係
  2. 輸入 機械的 減速比(無減速時為 1:1)
  3. 輸入 滾輪的 直徑(D) 或 圓周長
  4. 輸入 編碼器一圈(PLS)數,即電子齒輪比 1:1 時,要收到多少(PUU)伺服才會走一圈!
  5. 按下 “計算齒輪比” 即可得到 分子:分母 的數值
  6. 選擇 “有效數字位數“:用來指定 分子 的數值寬度 [註 2],建議6以上!
  7. 輸入 機構移動的 線速度 V 來檢視 模擬結果 是否滿足需求?

Read more

(線上版)電子齒輪比 計算工具 – 螺桿機構

齒輪比與導螺桿機構的關係

本文針對常見的 螺桿機構 提供一個工具程式,以便快速求出伺服的 電子齒輪比,並提供額外的模擬資訊,來評估各項 系統參數 是否合理.使用步驟如下:

  1. 輸入 使用者單位(PUU)與 機械單位 的關係
  2. 輸入 機械的 減速比(無減速時為 1:1)
  3. 輸入 螺桿的 導程(螺桿轉一圈 機械移動的距離)
  4. 輸入 編碼器一圈(PLS)數,即電子齒輪比 1:1 時,要收到多少(PUU)伺服才會走一圈!
  5. 按下 “計算齒輪比” 即可得到 分子:分母 的數值
  6. 輸入 機構移動的 線速度 來檢視 模擬結果 是否合理?

Read more

電子齒輪比 公式推導-螺桿機構

齒輪比與導螺桿機構的關係

本文針對 螺桿機構 提供伺服驅動器 電子齒輪比  的公式推導,決定齒輪比的原則是:先決定 位置單位 PUU(Pos of User Unit),必須要方便觀察,通常 PUU = 1~10 µm,依此計算出對應的齒輪比,而不是先決定齒輪比,再算出一個 PUU 是多少的長度,否則就是自找麻煩了(原因請參考 PUU 觀念說明),首先說明符號定義:

  • 1 mm 對應的 PUU數(P):PUU為 使用者單位,或 PLC 脈波單位
  • 機械的減速比(n1 : n2):減速時 n1 <= n2,
  • 螺桿圈數單位(REV):大寫
  • 馬達圈數單位(rev);小寫,rev = REV ×(n2/n1)
  • 螺桿的導程(Pitch):螺桿轉一圈機械移動的距離(mm/REV)
  • 編碼器解析度(R):編碼器一圈的 PLS 數(PLS/rev )
  • 電子齒輪比(Num/Den):PUU 脈波數 經 齒輪比 放大 得到 PLS 脈波數

Read more

一次搞懂多工排程

台達智能伺服為硬即時多工系統,採4個時槽(Slot)平分1毫秒的概念進行設計

如果你想更清楚多工切換的時序,首先你必須先把握下列多工切換三原則

 

  • Task-Switching Rules

1. 時槽已有指定的工作則執行該工作

下圖是系統內定Slot與Task的對應圖,當時間進入到Slot 0時開始運行Task 0,緊接著當時間進入到Slot 1時則切換至Task 1 運行,依此類推。

slot_task_

Read more

多工的需求-(2)支援 文本式 語法

開發 運動控制 程式,常見的語法可分成兩類:

  1. 圖形式      :LD(階梯圖),FBD(功能塊圖)
  2. 文本式(TEXT): BASIC,C/C++,ST,IL(MSM)…

我們考慮一個運動控制常見的例子:X-Y 平台需走兩段直線路徑,第一段須走完才能走第二段,以閃避中間的障礙物.分別用二種語法撰寫並加以比較.

Read more

凸輪曲線應用-(1)直線

凸輪曲線應用-(1)直線

電子凸輪的作用是 根據主軸的位置,計算出從軸的位置命令.而兩者的關係就是”凸輪曲線”!本文先介紹最簡單與最常見的曲線型式-”直線“!這表示主/從軸的位置呈現線性關係,如下圖所示,其特性有:

  1. 當主軸行走一周(3600),從軸行走 H (如圖)
  2. 當主軸靜止不動,從軸也靜止!
  3. 若主軸等速運行,從軸也是等速運行
  4. 當主軸速度愈快,從軸速度也愈快,呈線性關係!

Read more

電子凸輪 與 同步軸

電子凸輪 與 同步軸

在傳統機械裡,軸與軸之間是靠機構來傳動的,例如下圖所示,主/從軸間以一條 平皮帶 相連,當主軸開始轉動,從軸也一起轉動!假設主/從軸的輪徑相同,並在輪上都做一個 ∇ 標記,初始的位置都在正上方.經過一段時間的運轉後,由於皮帶的打滑,主/從軸輪徑誤差等諸多因素,發現主/從軸上的標記 ∇位置不一樣了!表示主軸與從軸的相位偏移了!

Read more